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Abstract. In this paper, in spite of the wide diffusion of the method that makes use of suitable variations
of the electric energy (or co-energy) for computing forces in non-linear, anisotropic dielectric solids, it is
shown that the arguments generally developed to justify this approach are, in reality, unsound. A rigorous
proof of the correctness of the method is provided. It is shown also that the method is frequently used in
cases where it fails; to this end, the limitations of the method itself are pointed out.

PACS. 41.20.Cv Electrostatics; Piezoelectricity and electrostriction

1 Introduction

One of the most popular methods for computing the re-
sultant force acting upon a solid dielectric (or conducting)
body immersed in a given electrostatic field makes use of
the variations of the so-called electric energy (or, alterna-
tively, of the co-energy) determined by suitable elemen-
tary, rigid displacements of the considered body.

In this paper, after having recalled briefly, in Section 2,
the above mentioned method, the concept of electric en-
ergy is critically examined in Section 3, in order to show
that the arguments by means of which the method itself
is usually justified are, in reality, untenable. In spite of
this, the approach is valid, and this is shown in Section 4,
where a rigorous proof of the correctness of the method is
presented.

Finally, the limitations of this approach are discussed,
and the cases where it fails are pointed out.

2 The physical system

The system we shall take into consideration is general
enough to allow us to handle the most common elec-
trostatic devices (capacitors, insulators, ...). It is com-
posed of: n conducting bodies C1, C2, ..., Cn, carrying free
charges q1, q2, ..., qn, respectively, and m solid dielectric
bodies D1, D2, ..., Dm, devoid of free charges, immersed
in free space (or, equivalently, in air).

Usually, the electric constitutive relationships of the m
dielectric bodies are expressed as

D = Dj(E), for j = 1, 2, ..., m, (1)

D being the electric displacement, and E the electrostatic
field. These relationships generally are assumed generally
to be non-linear, and anisotropic.

Of course, in lieu of equations (1), the inverse
relationships

E = Ej(D), for j = 1, 2, ..., m (2)

might be assigned equally.
As was previously anticipated, the resultant force act-

ing upon any one of the conducting (or dielectric) bodies,
say Ck, can be computed by means of suitable variations
of the electric energy, or alternatively of the co-energy.

In this section, we shall recall briefly this method (in its
two versions) in the form in which it is usually presented
in most text books; (see, e.g. [1,2]).

In the next section, we shall re-examine the whole mat-
ter in detail, to discuss the soundness of the arguments
generally developed to justify the method.

2.1 The method of the electric energy

In the first place, the so-called electric energy Ue is
introduced as

Ue =
∫∫∫

Ω∞

[∫ D

0

E(D) · dD

]
dΩ

=
∫∫∫
V

1
2
ε0E

2dΩ +
m∑
j=1

∫∫∫
Ωj

[∫ Dj

0

Ej(D) · dD

]
dΩj

(3)
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where: Ω∞ is the whole space, including the regions Ω1,
Ω2, ..., Ωm occupied by the m dielectric bodies, V is the
free space region (extending to infinity), and the integra-
tion of the electrostatic field E (in the variable D) takes
into account the constitutive function Ej(D) of each di-
electric body. (No energy term is present for the conduct-
ing bodies, since the electrostatic field vanishes, of course,
in those bodies.)

Next, an elementary, rigid displacement dx of the body
Ck is ideally performed, while the n free charges q1, q2, ...,
qn located on the n conducting bodies are kept constant.

The variation dUe is then computed in conformity with
equation (3), and, finally, the component of the resultant
force Fk (exerted by the electric field upon the body Ck) in
the direction of dx is evaluated by means of the following
relationship:

Fk · dx = −dUe. (4)

2.2 The method of the electric co-energy

The electric co-energy U∗e is introduced as

U∗e =
∫∫∫

Ω∞

[∫ E

0

D(E) · dE

]
dΩ

=
∫∫∫
V

1
2
ε0E

2dΩ +
m∑
j=1

∫∫∫
Ωj

[∫ Ej

0

Dj(E) · dE

]
dΩj

(5)

the meaning of the symbols being now obvious.
Next, an elementary, rigid displacement dx of the body

Ck is considered, while the potentials φ1, φ2, ..., φn of the n
conducting bodies are kept constant (by means of suitable
voltage sources).

Equation (4) is replaced, finally, by:

Fk · dx = dU∗e . (6)

3 Critical analysis of the method

Equation (4) is usually justified by invoking conservation
of energy. In a few words, one argues roughly as follows.

To give the body Ck the rigid displacement dx, “we”
should spend the elementary mechanical work

δLk = −Fk · dx. (7)

The displacement having been performed at constant free
charges, no other work is spent upon the system, and then,
invoking conservation of energy, one has:

δLk = dUe. (8)

It follows, therefore:

−Fk · dx = dUe,

as previously anticipated.
In a similar way, equation (6) is usually justified by

taking into account also the work performed by the voltage
sources required to keep constant the potentials φ1, φ2, ...,
φn of the n conducting bodies during the displacement dx.

Both arguments, however, do not consider the follow-
ing phenomena occurring during the displacement of Ck:

(i) the mechanical deformations induced in all solid bodies
(conductors and dielectrics), by electrostriction;
(ii) the exchanges of heat between each body and its en-
vironment;
(iii) the change of temperature as well as of thermodynamic
internal energy of each body.

At first sight, all these phenomena might seem neg-
ligible; in the following, however, it will be shown that
neglecting them completely, as is usually claimed, leads
to heavy mistakes.

Indeed, if one takes into account correctly the above
mentioned phenomena, equation (8) should be replaced
by the following relationship, expressing the fundamental
laws of classical thermodynamics (for a displacement dx
taking place at constant free charges):

δLk = dUf +
n∑
i=1

dU (C)
i +

m∑
j=1

dU (D)
j

−
n∑
i=1

T
(C)
i dS(C)

i −
m∑
j=1

T
(D)
j dS(D)

j , (9)

where: Uf is the energy stored in the electrostatic field,
U

(C)
i and U

(D)
j are the thermodynamic internal energies

stored in the ith conducting body and in the jth dielectric
body, respectively, T (C)

i and T
(D)
j are the temperatures

of the same bodies, and finally S
(C)
i and S

(D)
j are their

entropies.
As previously anticipated, if one drastically simpli-

fies the whole matter by merely neglecting all thermo-
dynamic terms in equation (9), this relationship would be
reduced to:

δLk = dUf . (10)

It should be noticed, however, that dUf must not be con-
fused with dUe and that, therefore, equation (10) is dif-
ferent from equation (8).

A discussion about Uf and Ue is now in order.
By definition, the energy Uf stored in the field of a

given electrostatic system corresponds to the work that
“we” have to spend on “building” the system itself, start-
ing from a situation in which all charges are diluted at
infinity with an infinitesimal volume (or surface) den-
sity, and acting against the only electrostatic “long-range”
forces (see, e.g. [3,4]). In addition, it is well known that
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Uf is expressed as

Uf =
∫∫∫

Ω∞

1
2
ε0E

2dΩ, (11)

where ε0 is the permittivity of free space, and the inte-
gration is extended over the whole space, including the
regions occupied by material bodies.

Turning now to the so-called electric energy Ue, some
fundamental points should be stressed firstly:

(i) the electric constitutive relationship of each solid di-
electric body is not so simple as equations (2) or (3), but
is generally of the following kind:

D = Dj(E,E, T ), for j = 1, 2, ..., m, (12)

E being the strain tensor (expressing the state of mechan-
ical deformation of the body), and T the (absolute) tem-
perature of the body itself. Of course, the constitutive
relationships might be expressed, equivalently, as

E = Ej(E,D, T ), for j = 1, 2, ..., m. (13)

It follows that, when the integration of E (in the variable
D), appearing in equation (3), and the integration of
D (in the variable E), appearing in equation (5), are
performed, the variations of the strain tensor E as well as
of the temperature T along the integration path should be
simultaneously specified; otherwise, the integrals would
remain undetermined;

(ii) once the variations of E and T along the integration
paths have been specified, Ue, as expressed by equa-
tion (3), represents the total work that “we” have to
spend in the course of the considered process, starting
from D = 0 in each point P of the whole space and
ending to D(P ); (see, e.g. [3]);

(iii) we cannot be sure a priori, however, that this work is
entirely transformed in energy stored in the electrostatic
field, since part of it could be converted in a) variations
of the internal energies of material bodies, b) heat trans-
ferred to the environment.

Now, expressing D, in dielectric bodies, as

D = ε0E + P,

(P being the polarization density), and taking into ac-
count the “true” electric constitutive relationships of the
dielectric bodies, equations (12, 13), one has:

Ue =
∫∫∫
V

1
2
ε0E

2dΩ

+
m∑
j=1

∫∫∫
Ωi

[∫ Dj

0

Ej(E,D, T ) · d(ε0E + P)

]
dΩj ,

and then:

Ue =
∫∫∫

Ω∞

1
2
ε0E

2dΩ+
m∑
j=1

∫∫∫
Ωi

[∫ Pj

0

Ej(E,P, T ) · dP

]
dΩj ,

(14)

having now indicated as Ej(E,P, T ) the relationship ob-
tained when D is replaced by ε0E + P into equation (13).

One has, therefore:

Ue − Uf =
m∑
j=1

∫∫∫
Ωi

[∫ Pj

0

Ej(E,P, T ) · dP

]
dΩj , (15)

and must conclude that Ue does not represent the energy
stored in the electrostatic field, but a mixed term con-
taining this energy as well as another term concerning
the specific polarization process taken into consideration
(see, e.g. [4,5]). This shows that equation (4) does not cor-
respond to merely neglecting all thermodynamic terms in
equation (9), since this would lead to equation (10), which
is different from equation (4).

In particular, it is known that, when the integration of
Ej in the variable P is performed at constant deformation
and temperature (i.e., at constant E and T ), each term of
the sum appearing on the r.h.s. of equation (15) represents
the variation of the Helmholtz free energy in one of the
dielectric bodies, in the course of a polarization process
(starting from P = 0 and ending to Pj) taking place at
constant deformation and temperature (see [3,4]).

The previous considerations show that the the argu-
ments generally used to justify the method of computing
forces through the variations of the so-called electric en-
ergy are, in reality, unsound. Similar conclusions hold also
as far as the method of co-energy is concerned.

In spite of this, both methods are correct, as will be
shown in the next section.

4 A rigorous justification of the two methods

In this section we shall provide a rigorous proof of the
correctness of the two methods. At the same time, we
shall point out their main limitations.

4.1 The method of the electric energy

Recalling equation (9), and assuming that all material
bodies have initially the same temperature T , one has:

δLk =dUf +
n∑
i=1

dU (C)
i +

m∑
j=1

dU (D)
j −

n∑
i=1

TdS(C)
i −

m∑
j=1

TdS(D)
j .

(16)
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Let us introduce now the Helmholtz free energies of all
conducting and dielectric bodies:

A
(C)
1 = U

(C)
1 − TS(C)

1 ,

..................................

A(C)
n = U (C)

n − TS(C)
n , (17)

A
(D)
1 = U

(D)
1 − TS(D)

1 ,

..................................

A(D)
m = U (D)

m − TS(D)
m .

Equation (16) can be rewritten, then, as:

δLk = dUf +
n∑
i=1

dA(C)
i +

m∑
j=1

dA(D)
j

+
n∑
i=1

S
(C)
i dT (C)

i +
m∑
j=1

S
(D)
j dT (D)

j . (18)

On the other hand, for a given initial configuration of the
bodies, and for assigned free charges q1, q2, ..., qn, the
resultant force Fk is uniquely determined. This implies, in
addition, that also the elementary work δLk is uniquely
determined for a prescribed displacement dx.

Thus, if we assume that the temperature of all bodies
is held constant during the displacement of Ck, (which
is in any case possible having recourse to a suitable heat
reservoir), equation (18) becomes:

δLk = dUf +
n∑
i=1

dA(C)
i +

m∑
j=1

dA(D)
j , (19)

having now indicated as dUf , dA(C)
i and dA(D)

j the vari-
ations of the energy stored in the electric field and the
changes of the Helmholtz free energies of the bodies, in-
duced by a displacement dx taking place at constant free
charges and temperature.

Let us notice now that, δLk being uniquely deter-
mined, the r.h.s. of equation (19) is also assigned for a
given initial configuration of the system, and for a pre-
scribed displacement dx.

On the other hand, one can rightfully imagine of re-
placing the n conducting bodies with others having dif-
ferent elastic properties, and the m solid dielectric bodies
with other bodies having the same electric constitutive
relationships but different elastic characteristics.

In such a case, each body would be subjected to a
different deformation with respect to the previous situa-
tion, and each term in the sum appearing on the r.h.s.
of equation (19) would be different in comparison with
the previous corresponding term, whereas the total sum
should remain unchanged.

This circumstance offers us the opportunity of comput-
ing δLk in a very simple way, by merely assuming that all
bodies (conductors as well as dielectrics) are mechanically
rigid and remain then undeformed during the displace-
ment dx. In such a case, one has:

dA(C)
i = 0, for i = 1, 2, ..., n,

since no variation of the Helmholtz free energy can arise
in a conducting body remaining undeformed at constant
temperature.

In addition, recalling that the term

∫∫∫
Ωi

[∫ Pj

0

Ej(E, P, T ) · dP

]
dΩj

corresponds precisely to the variation of the Helmholtz
free energy of the jth dielectric body in the course of a
process of polarization taking place at constant deforma-
tion and temperature, one concludes easily that

dA(D)
j = d

∫∫∫
Ωj

[∫ Pj

0

Ej(E, P, T ) · dP

]
dΩj ,

and then:

δLk = dUf +
m∑
j=1

dA(D)
j = d

∫∫∫
Ω∞

1
2
ε0E

2dΩ



+
m∑
j=1

d
∫∫∫

Ωj

[∫ Pj

0

Ej(E,P, T ) · dP

]
dΩj . (20)

Finally, recalling equation (14), one has:

δLk = dUe,

as previously anticipated.
Equation (20) proves that the electric energy method

of computing forces is rigorously correct, provided that
the rigid, elementary displacement dx is subjected to the
following constraints:

(i) the free charges located on the conducting bodies are
kept constant;
(ii) the temperature of all bodies is held constant;
(iii) the state of deformation of each body remains un-
changed, (i.e., all bodies are considered as rigid).

Notice that the above mentioned constraints are pre-
cisely the conditions respected by the näıve application of
the method.

4.2 The method of the electric co-energy

The main difference between the method of co-energy with
respect to the approach making use of energy is that the
potentials of the n conducting bodies are kept constant,
instead of free charges, during the elementary displace-
ment dx.

For this purpose, suitable voltage sources must be ide-
ally connected to the n conducting bodies. On the other
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hand, these sources will perform some elementary work
δLvs during the displacement dx (momentarily, we do not
need the expression of δLvs: we shall provide it later, at
the right moment).

However, equation (9), expressing the fundamental
laws of thermodynamics, should be modified now, to ac-
count for the new work term. We must write, therefore:

δLk + δLvs = dUf +
n∑
i=1

dU (C)
i +

m∑
j=1

dU (D)
j

−
n∑
i=1

T
(C)
i dS(C)

i +
m∑
j=1

T
(D)
j dS(D)

j . (21)

Assuming, in addition, that all bodies have initially the
same temperature T , and introducing the Helmholtz free
energies given by equations (17), (21) becomes:

δLk + δLvs = dUf +
n∑
i=1

dA(C)
i +

m∑
j=1

dA(D)
j

+
n∑
i=1

S
(C)
i dT (C)

i +
m∑
j=1

S
(D)
j dT (D)

j . (22)

Arguments similar in all respects to those developed in
Section 4.1 lead now to

δLk + δLvs = dUf +
m∑
j=1

dA(D)
j = d

∫∫∫
Ω∞

1
2
ε0E

2dΩ



+
m∑
j=1

d
∫∫∫

Ωj

[∫ Pj

0

Ej(E, P, T ) · dP

]
dΩj . (23)

The time has come now of expressing δLvs. One is easily
convinced that

δLvs =
n∑
i=1

φidqi,

having indicated as dqi, for i = 1, 2, ..., n, the variations
of the free charges of the n conducting bodies required to
keep constant their potentials.

On the other hand, one has easily (see, e.g. [3]):

∫∫∫
Ω∞

E ·D dΩ =
n∑
i=1

φiqi.

Thus, one concludes that the elementary work δLvs per-
formed by the voltage sources can be expressed as

δLvs =
n∑
i=1

φidqi = d
n∑
i=1

φiqi = d
∫∫∫

Ω∞

E ·D dΩ, (24)

provided that the term

d
∫∫∫

Ω∞

E ·DdΩ

is evaluated keeping constant the potentials of the n con-
ducting bodies.

Now, replacing the expression of δLvs given by
equation (24) into equation (23), one has:

δLk + d
∫∫∫

Ω∞

E ·DdΩ = dUf +
m∑
j=1

dA(D)
j

= d

∫∫∫
Ω∞

1
2
ε0E

2dΩ



+
m∑
j=1

d
∫∫∫

Ωj

[∫ Pj

0

Ej(E,P, T ) · dP

]
dΩj ,

and then:

δLk = d

∫∫∫
Ω∞

1
2
ε0E

2dΩ



+
m∑
j=1

d
∫∫∫

Ωj

[∫ Pj

0

Ej(E,P, T )·dP

]
dΩj−d

∫∫∫
Ω∞

E·DdΩ

= −d

∫∫∫
Ω∞

1
2
ε0E

2dΩ



+
m∑
j=1

d
∫∫∫

Ωj

[∫ Pj

0

Ej(E,P, T )·dP

]
dΩj−d

∫∫∫
Ω∞

E·P dΩ

= −d

∫∫∫
Ω∞

1
2
ε0E

2dΩ



− d


∫∫∫

Ω∞

E·P dΩ−
m∑
j=1

∫∫∫
Ωj

[∫ Pj

0

Ej(E,P, T )·dP

]
dΩj



= −
∫∫∫

Ω∞

[∫ E

0

D(E, E, T) · dE

]
dΩ = −dU∗e . (25)
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We conclude, therefore, that

Fk · dx =
∫∫∫

Ω∞

[∫ E

0

D(E, E, T) · dE

]
dΩ = dU∗e ,

(26)

provided that the integration of D in the variable E is per-
formed for constant potentials of the n conducting bod-
ies, and keeping constant the temperature as well as the
state of deformation of all bodies (i.e., considering them
as rigid).

Before ending this section, it is worth to point out that
the above discussed methods are frequently utilized even
when, in reality, they fail.

Indeed, the two methods of computing forces require,
to be correct, two conditions:
(i) the solid dielectric bodies must be non-hysteretic; oth-
erwise, the term appearing on the r.h.s. of equation (15)
would not represent the variation of the Helmholtz free
energy stored in the dielectric bodies, (since a fraction of
this term would be dissipated in heat and would not con-
tribute to the mechanical work);
(ii) the electric constitutive relationships of the solid di-
electrics, expressed by the equations (12), should be such
that the integrals of E in the variable D are independent
of the way in which D goes from zero to its final value
(at constant temperature and deformation). This requires
that the Jacobian matrix of the functions Dj(E,E, T ) with
respect to the variable E (for constant E and T ) is sym-
metric. Typical is the case of electrically linear dielectrics,
which require that the tensorial dielectric constant is
symmetric.

5 Conclusions

The concept of electric energy in non-linear, anisotropic
dielectric solids has been critically analysed and has been
shown to be expressed by the sum of two terms:
(i) the energy stored in the electrostatic field,
(ii) the variation of the Helmholtz free energy of the di-
electric body, when subjected to a polarization process
taking place at constant temperature and deformation.

On this ground, the method of computing forces
through the variations of the electric energy (or co-energy)
has been critically analysed and it has been shown that the
arguments usually developed for justifying such a method
are, in reality, unsound.

A rigorous proof of the correctness of the method is
then presented. Finally, the limitations of this approach
have been pointed out.
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